Non-singular Linear Transformations
and
MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION

SUBMITTED BY:
Ms. Harjeet Kaur
Associate Professor
Department of Mathematics
PGGCG – 11, Chandigarh
Definition: A linear transformation $T : V \to V$ is said to be **non-singular** if

\[T(v) = 0 \implies v = 0 \]

i.e. $N(T) = \{0\}$

Definition: A linear transformation $T : V$ is said to be **singular** if \exists some $v \in V$ s.t. $v \neq 0$ & $T(v) = 0$

i.e. $N(T)$ contains at least one **zero element**.
Definition: A linear transformation is an **isomorphism** if it is one-one and onto.

i.e. \(T : V \rightarrow W \) is an isomorphism if
(1) \(T \) is linear transformation.
(2) \(T \) is one-one.
(3) \(T \) is onto.

Then \(V \) and \(W \) are called **isomorphic**. We write \(V \cong W \)
THEOREM: \(V \cong W \iff \text{dim } V = \text{dim } W \)

Proof:- Let \(V \cong W \) and \(\text{dim } V = n \)
let \(B = \{ v_1, v_2, \ldots, v_n \} \) be a basis set for \(V \).

Claim: \(B_1 = \{ T(v_1), T(v_2), \ldots, T(v_n) \} \) is a basis for \(W \).

i.e. \(B_1 \) is linearly independent and the linear span of \(B_1 \) is \(W \).
Then \(\text{dim } W = n \).
conversely, let \(\text{dim} V = \text{dim} W = n \)

Let \(\{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \)

and \(\{w_1, w_2, \ldots, w_n\} \) be a basis of \(W \).

To define \(T: V \rightarrow W \),

let \(v \in V \)

\(\exists \) unique scalars \(\alpha_1, \alpha_2, \ldots, \alpha_n \in F \)

Such that \(v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \)

Define \(T(v) = \alpha_1 w_1 + \alpha_2 w_2 + \ldots + \alpha_n w_n \)

i.e. \(T(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n) = \alpha_1 w_1 + \alpha_2 w_2 + \ldots + \alpha_n w_n \)

\(T \) is well-defined

(1) \(T \) is linear-transformation.

(2) \(T \) is one-one.

(3) \(T \) is onto.

Hence \(V \cong W \)
Theorem: Every n-dimensional vector space over the field F is isomorphic to the space F^n.

Proof:- Let $\dim V = n$

Let $B = \{v_1, v_2, \ldots, v_n\}$ be an ordered basis for V.

Define $T: V \to F^n$, as follows:

Let $v \in V$, \exists unique scalars $\alpha_1, \alpha_2, \ldots, \alpha_n \in F$

$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$.

Define $T(v) = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in F^n$.

T is well-defined

To prove $V \cong F^n$

to prove that T is an isomorphism.

(i) To prove T is linear-transformation :-

$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in F$

(ii) To prove T is one-one:- $T(x) = T(y) \Rightarrow x = y$

(iii) To prove T is onto:- Now for $(\alpha_1, \alpha_2, \ldots, \alpha_n) \in F^n$

$\exists \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = x \in V$

s.t $T(x) = (\alpha_1, \alpha_2, \ldots, \alpha_n)$

Hence $V \cong F^n$.

Theorem: \(L(V, W) \) = the set all linear transformations from \(V(F) \) into \(W(F) \)
is a vector space over the field \(F \)
with vector addition and scalar multiplication defined by

\[
(T_1 + T_2)x = T_1(x) + T_2(x), \; \forall \; x \in V, \; and \; T_1, T_2 \in L(V, W)
\]

\[
(\alpha T_1)x = \alpha T_1(x) \; \forall \; x \in V \; and \; T_1 \in L(V, W) \; and \; \alpha \in F.
\]

if \(\text{dim} V = m \) \& \(\text{dim} W = n \) \; then \(\text{dim} \ L(V, W) = mn \)
Product of two linear transformations:-
Let U, V and W be three vector spaces over the same field and $T_1 : V \rightarrow W; T_2 : U \rightarrow V$ be two linear transformations. Then the composite mapping $T_1 T_2 : U \rightarrow W$ is defined by

$$(T_1 T_2)(x) = T_1[T_2(x)], \forall x \in U.$$

In general $T_1 T_2 \neq T_2 T_1$

e.g. Let $T_1, T_2 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$

$T_1(a, b) = (a, 0), T_2(a, b) = (0, a)$

$T_1 T_2(a, b) = (0, 0), \quad T_2 T_1(a, b) = (0, a)$
U, V, W be three vector spaces over the same field F. Let T and T’ be linear transformations from U to V. Let S and S’ be linear transformations from V to W then

(i) \(S(T + T') = ST + ST' \)

(ii) \((S + S')T = ST + S'T \)

(iii) \(\alpha(ST) = (\alpha S)T = S(\alpha T) \) for \(\alpha \in F \)
Let V be a vector space over F and $T: V \rightarrow V$ be a linear transformation, then T is invertible if and only if T is one–one and onto.

If T is a linear operator on $V(F)$ and T is invertible, then the inverse mapping T^{-1} defined as

$$y_0 = T(x_0) \iff T^{-1}(y_0) = x_0$$

for each $x_0, y_0 \in V$ is a linear transformation.
Let $V(F)$ and $W(F)$ be two finite dimensional vector spaces such that $\dim V = \dim W$. If T is a linear transformation from V and W, then the followings are equivalent:

(i) T is invertible
(ii) T is non-singular i.e. the null space of $T = \{0\}$

Proof: $T: V \rightarrow W$ be invertible.

$\exists S: W \rightarrow V$ such that $ST = TS = I$

Let $T(v) = 0$

$\Rightarrow S(T(v)) = 0$

$\Rightarrow (ST)(v) = 0$

$\Rightarrow I(v) = 0$

$\Rightarrow v = 0$
Example: Let T be the linear operator on \mathbb{R}^3 defined by

$$T(\ x, \ y, \ z) = (2x, \ 4x - y, \ 2x + 3y - z)$$

(i) show that T is invertible (ii) Find T^{-1}.

Solution: To show T is invertible i.e. T is non-singular.

Let $(x, y, z) \in N(T)$

$$\Rightarrow T(x, y, z) = (0, 0, 0)$$

$$\Rightarrow (2x, 4x - y, 2x + 3y - z) = (0, 0, 0)$$

$$\Rightarrow 2x = 0, \ 4x - y = 0, \ 2x + 3y - z = 0$$

$$\Rightarrow x = 0, y = 0, z = 0$$

$$\Rightarrow N(T) = \{ (0, 0, 0) \}$$

hence T is non-singular and so T is invertible.
(ii) Let \(T^{-1}(r, s, t) = (x, y, z) \).
\[\Rightarrow T(x, y, z) = (r, s, t) \]
\[\Rightarrow (2x, 4x - y, 2x + 3y - z) = (r, s, t) \]
\[\Rightarrow 2x = r, \ 4x - y = s, \ 2x + 3y - z = t \]
\[\Rightarrow x = \frac{1}{2} r, \ y = 2r - s, \ z = 7r - 3s - t \]
\[\Rightarrow T^{-1} (r, s, t) = (\frac{1}{2} r, 2r - s, 7r - 3s - t). \]
Let V and W be finite-dimensional vector spaces and $\dim V = n$ & $\dim W = m$

Let $B=\{x_1, x_2, \ldots, x_n\}$ be an ordered basis of V and $B_1=\{y_1, y_2, \ldots, y_m\}$ be an ordered basis of W.

Let $T : V \rightarrow W$ be a linear transformation (for $x \in V$, $T(x)$ is uniquely expressible as linear combination of elements of W.)

$$T(x_1) = a_{11}y_1 + a_{21}y_2 + a_{31}y_3 + \ldots + a_{m1}y_m = \sum_{i=1}^{m} a_{i1}y_i$$
$$T(x_2) = a_{12}y_1 + a_{22}y_2 + a_{32}y_3 + \ldots + a_{m2}y_m = \sum_{i=1}^{m} a_{i2}y_i$$
$$T(x_3) = a_{13}y_1 + a_{23}y_2 + a_{33}y_3 + \ldots + a_{m3}y_m = \sum_{i=1}^{m} a_{i3}y_i$$
$$\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots$$

$$T(x_n) = a_{1n}y_1 + a_{2n}y_2 + a_{3n}y_3 + \ldots + a_{mn}y_m = \sum_{i=1}^{m} a_{in}y_i$$
\[[T] = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 \vdots & \ddots & & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} \]

i.e. \([T:B, B_1] = (a_{ij})_{m \times n}\)
Thank You